Recent Article Published: High-Capacitance Hybrid Supercapacitor Based on Multi-Colored Fluorescent Carbon-Dots

tocfiguresonMulti-colored, water soluble fluorescent carbon nanodots (C-Dots) with quantum yield
changing from 4.6 to 18.3% were synthesized in multi-gram using dated cola beverage
through a simple thermal synthesis method and implemented as conductive and ion
donating supercapacitor component. Various properties of C-Dots, including size, crystal
structure, morphology and surface properties along with their Raman and electron
paramagnetic resonance spectra were analyzed and compared by means of their
fluorescence and electronic properties. α-Manganese Oxide-Polypyrrole (PPy) nanorods
decorated with C-Dots were further conducted as anode materials in a supercapacitor.
Reduced graphene oxide was used as cathode along with the dicationic bis-imidazolium
based ionic liquid in order to enhance the charge transfer and wetting capacity of …


Scientific Reportsvolume 7, Article number: 11222 (2017)

Recent Article Published: Magnetic nanoparticle-loaded electrospun poly(ε-caprolactone) nanofibers for drug delivery applications

Sunu1In this study, iron oxide (Fe 3 O 4) magnetic nanoparticles (MNPs) were loaded into poly (ε-
caprolactone)(PCL) nanofıber mats via electrospinning method and the composite materials
were characterized. MNPs were synthesized by a conventional co-precipitation method and
treated by oleic acid to obtain hydrophobic nanoparticles. The MNPs were added to PCL
solution before electrospinning at varying MNP feed concentrations (1: 25, 2: 25, 4: 25, 8: 25,
16: 25 and 32: 25; weight ratio of MNPs: polymer). The chemical structure of the nanofibrous
membranes was investigated by Fourier transform infrared spectroscopy (FTIR). Scanning
electron microscopy (SEM), and analyses by optical and confocal microscopes
demonstrated that MNP-loaded PCL nanofibers (MNP@ PCL NFs) were homogeneously
distributed in the membranes. Fiber diameter changed and bead formation occurred as …


Cite this article as:Demir, D., Güreş, D., Tecim, T. et al. Appl Nanosci (2018).