Recent Article Published: Magnetic nanoparticle-loaded electrospun poly(ε-caprolactone) nanofibers for drug delivery applications

Sunu1In this study, iron oxide (Fe 3 O 4) magnetic nanoparticles (MNPs) were loaded into poly (ε-
caprolactone)(PCL) nanofıber mats via electrospinning method and the composite materials
were characterized. MNPs were synthesized by a conventional co-precipitation method and
treated by oleic acid to obtain hydrophobic nanoparticles. The MNPs were added to PCL
solution before electrospinning at varying MNP feed concentrations (1: 25, 2: 25, 4: 25, 8: 25,
16: 25 and 32: 25; weight ratio of MNPs: polymer). The chemical structure of the nanofibrous
membranes was investigated by Fourier transform infrared spectroscopy (FTIR). Scanning
electron microscopy (SEM), and analyses by optical and confocal microscopes
demonstrated that MNP-loaded PCL nanofibers (MNP@ PCL NFs) were homogeneously
distributed in the membranes. Fiber diameter changed and bead formation occurred as …

 

Cite this article as:Demir, D., Güreş, D., Tecim, T. et al. Appl Nanosci (2018). https://doi.org/10.1007/s13204-018-0830-9

Recent article published: Magnetic nanoparticle embedded stimuli responsive hydrogels as anti-inflammatory drug-carriers

Sibel Barbaros, Rukan Genç*

Dokuz Eylul Universitesi Muhendislik Dergisi, 18(1) pp31-3., 2016, DOI:10.21205/deufmd.20165217543.

In this study, magnetic alginate beads were successfully synthesized by integrating superparamagnetic iron oxide nanoparticles (Fe3O4) in sodium alginate microbeads during the synthesis. The as-obtained dried samples were analyzed by means of their water detention capacity and drug encapsulation efficiency. Further, an anti-inflammatory drug (Cefazolin), mostly used for the treatment of joint inflammations after surgery, was used as a model drug in order to evaluate the stimuli-responsive properties of macrocomposites under magnetic field for the development of on-site drug delivery system. To do so, their drug release kinetics at changing environmental conditions, such as pH, temperature, and magnetic field were investigated and compared with bare alginate beads.


Sunu2